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Abstract
Operator techniques are developed for describing electromagnetic waves in
circular waveguides, on the basis of which an evolution operator (characteristic
matrix) and impedance tensors of a homogeneous circular bianisotropic layer
are determined. We investigate solutions of Maxwell’s equations depending on
the dielectric permittivity and magnetic permeability tensors and the gyration
pseudotensors. We show that the solutions are expressed in terms of the
Bessel functions with a matrix argument for the media isotropic in the fibre
cross-section. The method proposed is applied for an analytical derivation of
dispersion equations of isotropic and bianisotropic waveguides.

PACS numbers: 02.10.Yn, 42.81.−i

1. Introduction

Guiding propagation of electromagnetic waves has been investigated in detail, for example, in
[1–13], where a number of methods for mode analysis of planar waveguides and circular fibres
are worked out. The radiation in a planar waveguide can be described using ray analysis [4, 7]
or wave analysis (for instance, matrix approach) [5, 10]. For bianisotropic [14, 15] waveguides
the matrix approach is most convenient, because it allows us to determine an algorithm of the
problem, which does not depend on the complexity of a medium (the matrices are cumbersome,
but well known). That is why one can write and numerically solve a dispersion equation for
any multilayer waveguide.

Operator matrices were introduced by Halmos in [16] as a correspondence between
operators and matrices induced by the direct expansion of a space. In electrodynamics and
optics, the operator matrices are considered in the space generated by the direct sum of the
two three-dimensional spaces and are expressed by the block matrices [17, 18]. The matrix
blocks are the tensors of the three-dimensional space for operating with which we use methods
of the coordinate-free tensor algebra [14, 19, 20]. For a bianisotropic stratified medium, the
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operator matrices can be represented in the form of 4 × 4 matrices [21] or 6 × 6 matrices
[10] (in that case the matrices are degenerate, and instead of the matrix inversion we should
use pseudoinversion [18]). Matrix formalism is based on the use of four field components
of six: two electric and two magnetic field components. These field components satisfy a
system of differential equations of the first order and lie in the plane of a film being continuous
on this plain interface. Dispersion equations of a bianisotropic waveguide are written by
means of an evolution operator (characteristic matrix) of a film and impedance tensors of
a substrate and a cover. The evolution operator relates the fields in two different points—
on the film interfaces. In that way one can investigate any multilayer waveguide, i.e. find
modes and their polarizations, energy flux in a film. The operator techniques have also been
applied for determining the reflection and transmission coefficients of a stratified bianisotropic
media [10, 22, 23].

In this paper, we present the operator method for describing electromagnetic waves in
multilayer bianisotropic fibres. Multilayer waveguides play an important part in the fibre
optics. They increase a domain of the single mode propagation and localize energy in the
core to a greater extent than two-layer fibres. Therefore, the core of a multilayer fibre can be
made of the larger diameter, than the core of a two-layer fibre, and requests for their mating
decrease. In addition, multilayer fibres have such dispersion characteristics that they can be
used for the dispersion compensation [6, 24].

Besides the introduction and conclusion, the paper contains four sections. All results
are obtained for medium tensors which can be decomposed into dyads with radial-dependant
coefficients in cylindrical coordinates. In section 2, we derive the system of differential
equations of the first order for four tangential field components. These components lie in
the plane tangent to the surface of a circular cylinder and are continuous on the boundary.
Section 3 is devoted to determining dispersion equations, mode polarizations and energy
localization coefficient for a multilayer bianisotropic fibre with known evolution operators
and impedance tensors of each circular layer. In section 4, the general solution of obtained
equations is given for a homogeneous medium. It is expressed by a power series of the
radial coordinate. The general formulae for evolution operators and impedance tensors are
presented. In section 5 we determine the types of media, for which solutions of the Maxwell
equations are simplified significantly. In particular, the solutions are expressed in terms of the
Bessel functions with tensor (matrix) argument for bianisotropic media isotropic in the fibre
cross-section. Finally, we consider the examples of isotropic and bianisotropic fibres.

2. Operator matrices for bianisotropic fibre optics

Let us consider a monochromatic electromagnetic wave of frequency ω in a circular
bianisotropic waveguide. For describing electromagnetic fields, we use the basis vectors
of the cylindrical coordinates (r, ϕ, z): er (ϕ), eϕ(ϕ) and ez. Axis z determines the guiding
direction, and for the unit vectors er , eϕ and ez we have the following relationships:

er × eϕ = ez

∂eϕ

∂ϕ
= −er

∂er

∂ϕ
= eϕ. (1)

The Maxwell equations in the cylindrical coordinates take the form(
e×

z

∂

∂z
+ e×

r

∂

∂r
+ e×

ϕ

1

r

∂

∂ϕ

)
H(r, t) = 1

c

∂D(r, t)

∂t
(2)(

e×
z

∂

∂z
+ e×

r

∂

∂r
+ e×

ϕ

1

r

∂

∂ϕ

)
E(r, t) = −1

c

∂B(r, t)

∂t
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where H, E, B and D are the complex vectors of strength and induction of the magnetic
and electric fields, b× is the antisymmetric second rank tensor dual of an arbitrary vector
b in the three-dimensional space U ((b×)ik = eijkbj , eijk is the Levi-Civita pseudotensor).
Here and further we use covariant coordinate-free formalism for describing electromagnetic
waves in complex (anisotropic, biisotropic, bigyrotropic, bianisotropic) media [14, 17]. The
constitutive equations relate the Fourier images of electromagnetic field vectors and are written
for bianisotropic media in the form

D(r, ω) = ε(r, ω)E(r, ω) + α(r, ω)H(r, ω)
(3)

B(r, ω) = κ(r, ω)E(r, ω) + µ(r, ω)H(r, ω)

where ε and µ are the dielectric permittivity and magnetic permeability tensors, α and κ are
the gyration pseudotensors. In this investigation we consider tensors ε, µ, α, κ , which can be
presented as a decomposition of dyads with coefficients depending on the radial coordinate r:

ξ(r, ϕ) =
3∑

i,j=1

ξij (r)ei ⊗ ej =

ξrr ξrϕ ξrz

ξϕr ξϕϕ ξϕz

ξzr ξzϕ ξzz


 ξ ∈ {ε, µ, α, κ} (4)

where e1 = er , e2 = eϕ, e3 = ez, ei ⊗ ej is a dyad. Using the Fourier transformation, the
fields can be written as(

H(r, t)

E(r, t)

)
= e−iωt

∫
R

dβ eiβz
∑
ν∈Z

eiνϕ

(
H(r, ϕ, β, ν)

E(r, ϕ, β, ν)

)
(5)

where β in the argument of the Fourier images is sometimes called the mode propagation
constant. Since the tensors ε, µ, α, κ are of form (4), we can search the Fourier images
H = H(r, ϕ, β, ν) and E = E(r, ϕ, β, ν) as a basis vector decomposition with the radial-
dependant coordinates (i.e. H = Hr(r)er (ϕ) + Hϕ(r)eϕ(ϕ) + Hz(r)ez). Then we easily
calculate
∂(H(r, ϕ, β, ν) eiνϕ)

∂ϕ
= eiνϕ

(
iνH + Hϕ

∂eϕ

∂ϕ
+ Hr

∂er

∂ϕ

)
= eiνϕ

(
iν + e×

z

)
H(r, ϕ, β, ν). (6)

By substituting (5) and (6) into Maxwell’s equations (2) we obtain

e×
r

dH

dr
+

(
iβe×

z +
iν

r
e×

ϕ +
1

r
ez ⊗ eϕ

)
H = −ik(εE + αH)

(7)

e×
r

dE

dr
+

(
iβe×

z +
iν

r
e×

ϕ +
1

r
ez ⊗ eϕ

)
E = ik(µH + κE)

where k = ω/c is the vacuum wave number. In equations (7) there is the one r-derivative.
The basis vectors er , eϕ, ez determine a vector structure of the fields H and E. Equations (7)
in coordinate representation do not depend on the angle coordinate ϕ, therefore, a basis vector
decomposition of the Fourier images actually holds true.

From equations (7), one can write four differential equations of the first order and
two algebraic equations. By means of these algebraic equations we can rewrite (7) for
new variables—tangential components of the electric E and magnetic H fields. The
tangential components lie in the plane tangent to the surface of a circular cylinder and are
continuous on the cylindrical boundary. Thus, the tangential components are of the form
Et = IE, Ht = IH , where I = 1 − er ⊗ er = −e×2

r is the projection operator onto
the plane normal to the vector er . Introducing vector u = (β/k)eϕ − ν/(kr)ez and taking
into consideration relationships uH = erεE + erαH, uE = −erµH − erκE, we obtain a
connection between the complete field vectors and their tangential components(

H

E

)
= V

(
Ht

Et

)
V =

(
I + er ⊗ v1 er ⊗ v2

er ⊗ v3 I + er ⊗ v4

)
(8)
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where

v1 = δr(κrrerαI − εrrerµI − κrru) v2 = δr(κrrerεI − εrrerκI − εrru)

v3 = δr(αrrerµI − µrrerαI + µrru) v4 = δr(αrrerκI − µrrerεI + αrru) (9)

δr = (εrrµrr − αrrκrr )
−1 ξrr = er ξer ξ ∈ {ε, µ, α, κ}.

From (7) we find the equations for the tangential components:

dW (r)

dr
= ikM(r)W (r) (10)

where

M =
(

A B

C D

)
W =

(
Ht

Et

)

A = i

kr
eϕ ⊗ eϕ + e×

r αI + e×
r εer ⊗ v3 + e×

r (u + αer ) ⊗ v1

B = e×
r εI + e×

r εer ⊗ v4 + e×
r (u + αer ) ⊗ v2 (11)

C = −e×
r µI − e×

r µer ⊗ v1 + e×
r (u − κer ) ⊗ v3

D = i

kr
eϕ ⊗ eϕ − e×

r κI − e×
r µer ⊗ v2 + e×

r (u − κer ) ⊗ v4.

The operator matrix M is the operator of the six-dimensional space V = U ⊕ U , blocks
A,B, C,D are the planar tensors in the three-dimensional space (for a planar tensor A

condition Aer = erA = 0 holds true). At the same time projectors of the operator M
determine its invariant subspaces, and two-dimensional subspace generated by vectors

(
er

0

)
and

(
0
er

)
is the proper subspace with zero eigenvalue. The operator matrix M can also be

presented as a matrix in the four-dimensional subspace, then the blocks A,B,C,D are the 2
× 2 matrices.

Expressions (8)–(11) for a circular layer are written in a form analogous to well-known
formulae for a stratified slab [10, 21] when r → ∞. The fundamental solution of (10) is
expressed by an evolution operator �r

a of a circular layer (a, r):

W (r) = �r
a[ikM(r)]W (a) a �= 0. (12)

Evolution operator is a product integral (matrizant) [18, 25] and has the form

�r
a[ikM] =

∫ r

a

(E + ikM(r) dr) E =
(

I 0
0 I

)
.

From (10) one can obtain a tensor Riccati equation for an impedance tensor � [22]:

1

ik

d�

dr
+ �B� + �A − D� − C = 0. (13)

The planar impedance tensor �(r) relates the tangential components of the electric and
magnetic field strength as Et = �Ht. The independent solutions of (13) are two impedance
tensors �1(r) and �2(r). In the layer 0 � r � a (a � r � ∞) one of the solutions has a
peculiarity in the point r = 0 (r = ∞). Therefore, in these layers only one of the tensors
�1(r), �2(r) is realized.

An impedance tensor of a homogeneous bianisotropic slab is constant. For a homogeneous
circular layer an impedance tensor always depends on the radial coordinate r, because the
planar tensors A,B,C,D always depend on r (even for homogeneous isotropic media). That
is why we cannot simplify a tensor Riccati equation reducing it to an algebraic equation—a
tensor quadratic equation. In [10], iterative methods of numerical solution of (13) are given.
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z

er

eφ

ez

a0
an

Figure 1. Geometry of a multilayer fibre.

3. Covariant dispersion equations of multilayer bianisotropic fibres

Let us consider a circular bianisotropic waveguide represented in figure 1. It consists of a core,
a cladding and n intermediate layers with the following tensor electromagnetic characteristics
of a medium:

(ε, µ, α, κ) =



(εco, µco, αco, κco) for r < a0

(εj , µj , αj , κj ) for aj−1 � r < aj j = 1, . . . , n.

(εcl, µcl, αcl, κcl) for r � an

(14)

If we solve equation (10) for each fibre layer, i.e. we find evolution operators of the
intermediate layers and impedance tensors of the core and cladding, we will determine a
dispersion equation of such a waveguide, its polarization and energy characteristics. In fact,
the tangential components of the electric and magnetic fields on the boundaries between
circular layers are related according to (12) as

W (j)(aj ) = �
aj

aj−1W
(j)(aj−1) j = 1, . . . , n

where �
aj

aj−1 and W (j) are the evolution operator and the tangential field components of the
j th layer, respectively. The boundary conditions (continuity of the amplitudes Ht, Et) are

W (co)(a0) = W (1)(a0) W (1)(a1) = W (2)(a1) . . . W (n)(an) = W (cl)(an) (15)

where W (co) and W (cl) are the tangential field components in the core and cladding. Then
W (co) and W (cl) are connected by means of the evolution operator of all intermediate layers

�an

a0
= �an

an−1
�an−1

an−2
. . . �a1

a0

by the relationship

W (cl)(an) = �an

a0
W (co)(a0). (16)

Using the surface impedance tensors of the core �co = �co(a0) and cladding �cl = �cl(an)

and multiplying (16) by the row block matrix (�cl − I ) we obtain

H
(co)
t (a0) = 0  = (�cl − I )�an

a0

(
I

�co

)
(17)
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where H
(co)
t (a0) are the tangential components of the magnetic field on the interface r = a0.

If there are no intermediate layers (n = 0), then �a0
a0

= E and  = �cl − �co. In the three-
dimensional space a planar tensor  has two eigenvalues equal to zero, which correspond to
eigenvectors er and H

(co)
t (a0). Therefore,  is a dyad and expression

tr() = 0 (18)

determines a dispersion equation of a multilayer bianisotropic fibre. Invariant tr() is the trace
of an adjoint tensor (an adjoint tensor  is defined by the expression  =  = det()1,
where 1 is the identity tensor in the three-dimensional space) [14, 17]. Taking into
consideration  = tr()er ⊗ er = 0 and the Cayley–Hamilton theorem

 − tr()1 = ( − tr()1) (19)

we represent the dispersion equation (18) in the form [22]

tr(2) = (tr())2. (20)

The dispersion equation (20) can be expressed in terms of components of the planar
tensor  = 11ez ⊗ ez + 12ez ⊗ eϕ + 21eϕ ⊗ ez + 22eϕ ⊗ eϕ (dispersion equation in the
two-dimensional subspace is the determinant of 2 × 2 matrix ):

1122 − 1221 = 0. (21)

The dispersion equations (18), (20) and (21) are equivalent and can be written for any
multilayer fibre, if we know the evolution operators and impedances of the corresponding
layers. The solution of a dispersion equation determines a connection between the mode
propagation constant β and the electromagnetic wave frequency ω. The modes of a circular
fibre are expressed from the dispersion equation for different integer numbers ν and have
certain polarizations. Let us find the tangential components of the magnetic field on the
interface r = a0. Using (17) and the Cayley–Hamilton theorem (19), we obtain

H
(co)
t (a0) = ( − tr()I)p (22)

where p is an arbitrary vector satisfying the condition (− tr()I)p �= 0. In the general case,
a mode polarization can be characterized by the ratio of the electric and magnetic longitudinal
field components [6]

δ = Ez

iHz

= ez�co(a)( − tr()I)p

iez( − tr()I)p
. (23)

The values δ > 0 and δ < 0 correspond to the hybrid HE- and EH-modes, respectively. If
δ = 0, then a mode is a transverse electrical one (TE); if δ = ∞, then a mode is called a
transverse magnetic mode (TM). TE- and TM-modes are realized in multilayer isotropic fibres
at ν = 0.

Energy flux in the direction of radiation propagation is the projection of the pointing
vector onto the longitudinal axis z

Sz = c

16π
W +(r)V +

(
0 e×

z

−e×
z 0

)
V W (r)

where + is the Hermitian conjugation. By substituting operator (8) we obtain (the symbol ∗
denotes complex conjugation)

Sz = c

16π
W +(r)

(
v∗

2 ⊗ eϕ + eϕ ⊗ v3 −v∗
1 ⊗ eϕ + eϕ ⊗ v4

v∗
4 ⊗ eϕ − eϕ ⊗ v1 −v∗

3 ⊗ eϕ − eϕ ⊗ v2

)
W (r). (24)
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The energy characteristic of a waveguide is the mode energy localization coefficient. It is
equal to [6]

ρ = Pco

P
Pco =

∫ a0

0
Sz(r)r dr P =

∫ ∞

0
Sz(r)r dr. (25)

Dispersion equation (18) in the analogous form has been considered earlier for multilayer
planar waveguides (see [10, 22]). For a multilayer fibre (18) can be easily programmed for
solving numerically.

4. Evolution operators and impedance tensors of homogeneous bianisotropic media

Let us solve equation (10) in the case of a homogeneous medium, when the components
εij , µij , αij , κij in (4) are constant. Then the operator matrix M can be presented as a power
expansion of 1/r:

M = M(0) +
1

r
M(1) +

1

r2
M(2) (26)

where constant matrices M(0),M(1),M(2) can be easily found. We do not demonstrate them,
because they are cumbersome. Further, we will determine the general structure of these
matrices.

The six-dimensional space V can be represented by the direct product of the three-
dimensional U and two-dimensional W spaces. W is generated by the unit vectors �e1 =(1

0

)
, �e2 = (0

1

)
. Therefore, W can be decomposed by means of the basis vectors of the space W

W = Ht

(
1
0

)
+ Et

(
0
1

)
= Ht�e1 + Et�e2

or the space U

W = �wϕeϕ + �wzez �wϕ = eϕW =
(

eϕH

eϕE

)
=

(
Hϕ

Eϕ

)
�wz =

(
Hz

Ez

)
.

The block matrix M also has two representations:

M = A�e1 ⊗ �e1 + B�e1 ⊗ �e2 + C�e2 ⊗ �e1 + D�e2 ⊗ �e2

and

M = Mzzez ⊗ ez + Mzϕez ⊗ eϕ + Mϕzeϕ ⊗ ez + Mϕϕeϕ ⊗ eϕ

Mzz = ezMez =
(

ezAez ezBez

ezCez ezDez

)
=

(
Azz Bzz

Czz Dzz

)
Mzϕ = ezMeϕ Mϕz = eϕMez Mϕϕ = eϕMeϕ.

The notation of the operator matrix M in terms of the planar tensors A,B,C,D has
already been used in (11). Mzz,Mzϕ,Mϕz and Mϕϕ are the matrices of the space W .

One can find the solution of equation (10) in several ways. The first way is to solve the
differential equation of the first order (10) for the vector W directly. In that case the solution
can be expressed by the power series of r. The second method is based on solving a differential
equation of second order for the tangential components of the magnetic Ht or electric Et field.
We will solve equation (10) in a third way, i.e. solve a differential equation of second order
for �wz. Then for bianisotropic media matrices M(0),M(1),M(2) take the following form:

M(0) = M(0)
zz ez ⊗ ez + M(0)

zϕ ez ⊗ eϕ + M(0)
ϕz eϕ ⊗ ez + M(0)

ϕϕ eϕ ⊗ eϕ
(27)

M(1) = M(1)
zz ez ⊗ ez + M(1)

ϕz eϕ ⊗ ez + M(1)
ϕϕ eϕ ⊗ eϕ M(2) = M(2)

ϕz eϕ ⊗ ez.
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In this representation some matrices become zero: M(1)
zϕ = M(2)

zz = M(2)
zϕ = M(2)

ϕϕ = 0.
Therefore, Mzϕ = M(0)

zϕ is a constant matrix.
From (10) we obtain the differential equation for �wz:

�w′′
z + P �w′

z + Q �wz = 0 (28)

where

P = P (0) +
1

r
P (1) Q = Q(0) +

1

r
Q(1) +

1

r2
Q(2). (29)

Constant matrices P (0), P (1),Q(0),Q(1), Q(2) of the space W equal

P (0) = −ik
(
M(0)

zz + M(0)
zϕ M(0)

ϕϕ M(0)−1
zϕ

)
P (1) = −ik

(
M(1)

zz + M(0)
zϕ M(1)

ϕϕ M(0)−1
zϕ

)
Q(0) = k2

(
M(0)

zϕ M(0)
ϕz − M(0)

zϕ M(0)
ϕϕ M(0)−1

zϕ M(0)
zz

)
Q(1) = k2

(
M(0)

zϕ M(1)
ϕz − M(0)

zϕ M(1)
ϕϕ M(0)−1

zϕ M(0)
zz − M(0)

zϕ M(0)
ϕϕ M(0)−1

zϕ M(1)
zz

)
Q(2) = ikM(1)

zz + k2M(0)
zϕ M(2)

ϕz − k2M(0)
zϕ M(1)

ϕϕ M(0)−1
zϕ M(1)

zz .

(30)

According to [26] equation (28), which can be reduced to the system of four ordinary
differential equations of the first order, has a fundamental sequence of four regular solutions
near r = 0. Therefore, we search the solution of equation (28) in the form of a power series
(Frobenius method)

�wz =
∞∑
l=0

rσ+l �w(l)
z . (31)

Substitution of (31) in (28) gives the relationship

�l �w(l)
z + ϒl �w(l−1)

z + Q(0) �w(l−2)
z = 0 (32)

where (1̂ is the identity tensor in the two-dimensional space W)

�l = (l + σ)(l + σ − 1)1̂ + (l + σ)P (1) + Q(2) ϒl = (l + σ − 1)P (0) + Q(1). (33)

At l = 0 we obtain

�0 �w(0)
z = 0 (34)

from which we can write a condition for σ

det(�0) ≡ det(σ (σ − 1)1̂ + σP (1) + Q(2)) = 0 (35)

and an expression for the vector �w(0)
z

�w(0)
z = (�0 − tr(�0)1̂)c�a (36)

where c is a scalar constant, an arbitrary vector �a satisfies (�0 − tr(�0)1̂)�a �= 0.
Equation (35) gives four roots σ1, σ2, σ3, σ4. If the difference between any two roots is
not an integer number, then each of four fundamental solutions can be presented as a power
series (31). The vector �w(0)

z determines a one-dimensional space of solutions: one constant cj

corresponds to one value σj , j = 1, 2, 3, 4, and (36) holds true. Otherwise the fundamental
solution for the greater root is expressed by the power series and for other roots can contain
logarithms [26]. If �0 = 0, then the space of solutions is two dimensional. There are two
couples of roots of equation (35) (for example, σ1 = σ2, σ3 = σ4), and an arbitrary vector �w(0)

z

determines a couple of constants: �w(0)
z = c1�e1 + c2�e2 or �w(0)

z = c3�e1 + c4�e2.
At l = 1 we find �w(1)

z :

�w(1)
z = −�−1

1 ϒ1 �w(0)
z . (37)
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Further, we can write the following recurrence relation, which expresses �w(l)
z in terms of

�w(l−1)
z and �w(l−2)

z :

�w(l)
z = −�−1

l

(
ϒl �w(l−1)

z + Q(0) �w(l−2)
z

)
. (38)

We write the general solution of equation (28) as a linear combination of four independent
solutions with constant coefficients cj :

�wz(r) =
4∑

j=1

Tj (r)cj �aj (39)

where Tj (r) is an independent solution expressed by the 2 × 2 matrix and �aj is an arbitrary
vector defined in (36).

Using the known solution (39), let us find an evolution operator �r
a and an impedance

tensor �. The vector W equals

W =
4∑

j=1

(Tj (r)�ajez + ẐTj �ajeϕ)cj (40)

where the differential operator Ẑ is expressed by the formula

Ẑ = M−1
zϕ

(
1

ik

d

dr
− Mzz

)
.

Considering constants cj as the components of vectors c1 = c1ez + c2eϕ and c2 =
c3ez + c4eϕ of the space U , the vector W can be written in the form

W = S(r)C S =
(

η1 η2

ζ1 ζ2

)
C =

(
c1

c2

)
. (41)

The blocks of the matrix S are planar tensors of the three-dimensional space U . They are
equal to

η1 = �e1T1 �a1ez ⊗ ez + �e1ẐT1 �a1eϕ ⊗ ez + �e1T2 �a2ez ⊗ eϕ + �e1ẐT2 �a2eϕ ⊗ eϕ

η2 = �e1T3 �a3ez ⊗ ez + �e1ẐT3 �a3eϕ ⊗ ez + �e1T4 �a4ez ⊗ eϕ + �e1ẐT4 �a4eϕ ⊗ eϕ

ζ1 = �e2T1 �a1ez ⊗ ez + �e2ẐT1 �a1eϕ ⊗ ez + �e2T2 �a2ez ⊗ eϕ + �e2ẐT2 �a2eϕ ⊗ eϕ

ζ2 = �e2T3 �a3ez ⊗ ez + �e2ẐT3 �a3eϕ ⊗ ez + �e2T4 �a4ez ⊗ eϕ + �e2ẐT4 �a4eϕ ⊗ eϕ.

(42)

The evolution operator �r
a , which relates the tangential components in the points a and r,

is determined by the relationship

�r
a = S(r)S−(a) (43)

where S− is a pseudoinverse matrix (SS− = S−S = E) [14, 17]. Expression (41) can be
easily represented as a superposition of two waves

W =
(

Ht1

Et1

)
+

(
Ht2

Et2

)
(44)

where Ht1 = η1c1, Ht2 = η2c2, Et1 = ζ1c1 and Et2 = ζ2c2. Using the definition of an
impedance tensor Etm = �mHtm we obtain

(ζm − �mηm) cm = 0 m = 1, 2. (45)

Since (45) should hold for any vectors c1 and c2 the impedance tensors of each wave
equal

�m = ζmη−
m (46)
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where η−
m is a pseudoinverse tensor (η−

mηm = ηmη−
m = I ). If we know the initial wave

amplitudes Ht1(a) and Ht2(a), then the field evolution is expressed as

Htm(r) = ηm(r)η−
m(a)Htm(a) Etm(r) = ζm(r)η−

m(a)Htm(a). (47)

Thus, we have found the general expressions for the evolution operator (43) and the
impedance tensor (46) of a circular bianisotropic layer. These formulae are written for
the known solutions Tj , j = 1, 2, 3, 4 and used for an analysis of dispersion equations. In the
next section we obtain some particular solutions Tj and fibre dispersion equations.

5. Bessel solutions

Bianisotropic media allow us to realize a number of particular cases of solving equation (28).
The solution is determined by the five tensors P (0), P (1),Q(0), Q(1),Q(2). In this section, we
investigate the connection between the form of these tensors and the type of a bianisotropic
medium.

Assuming P (0) = 0,Q(1) = 0 we obtain the equation (it is similar to the Bessel equation,
but with tensor coefficients):

�w′′
z +

1

r
P (1) �w′

z +

(
Q(0) +

1

r2
Q(2)

)
�wz = 0. (48)

In that case ϒl = 0, and therefore �w(2p+1)
z = 0, p = 0, 1, 2, . . .. Non-zero terms of the series

(31) are the even terms:

�w(2p)
z = N(p) �w(0)

z N(0) = 1̂ N(p) = (−1)p�−1
2p Q(0)�−1

2p−2Q
(0) . . . �−1

2 Q(0) (49)

wherefrom solutions (39) are equal to

Tj =
∞∑

p=0

r2p+σj N(p). (50)

Let us add conditions P (1) = 1̂,Q(2) = −bν21̂ to the relationships P (0) = 0,Q(1) = 0
(b is a constant). The only arbitrary tensor is Q(0). Equation (28) takes the form

�w′′
z +

1

r
�w′

z +

(
Q(0) − bν2

r2
1̂

)
�wz = 0. (51)

Then �l = ((l + σ)2 − bν2)1̂ is proportional to the identity tensor of the space W .
Equation (35) gives two couples of the same roots σ1 = σ2 = √

bν, σ3 = σ4 = −√
bν. At

integer values of
√

bν (for example, b = 1) the solutions can be written in terms of the Bessel
functions [27] with the tensor argument

√
Q(0)r

T1 = T2 = J√
bν

(√
Q(0)r

)
T3 = T4 = Y√

bν

(√
Q(0)r

)
or the modified Bessel functions

T1 = T2 = I√
bν

(√−Q(0)r
)

T3 = T4 = K√
bν

(√−Q(0)r
)
.

At fractional values of
√

bν we have the following linearly independent solutions:

T1 = T2 = J√
bν

(√
Q(0)r

)
T3 = T4 = J−√

bν

(√
Q(0)r

)
.

The vectors �aj equal �a1 = �a3 = �e1, �a2 = �a4 = �e2. Tensor Q(0) can be written in
the spectral form: Q(0) = λ1τ1 + λ2τ2, where λ1, λ2 are the eigenvalues of the tensor Q(0),
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Table 1. Examples of bianisotropic media for some values of tensors P (0), P (1),Q(0), Q(1), Q(2)

(χ is the parameter which can be called the susceptibility).

Tensors P (0), P (1),
Q(0), Q(1),Q(2) Bianisotropic medium, ξ ∈ {ε, µ, α, κ}
P (0) = 0, the rest (a) ξ = ξrrer ⊗ er + ξϕϕeϕ ⊗ eϕ + ξzzez ⊗ ez

tensors are arbitrary + ξϕreϕ ⊗ er + ξrϕer ⊗ eϕ

(b) ε = εrrer ⊗ er + εϕϕeϕ ⊗ eϕ + εzzez ⊗ ez + εrze
×
ϕ

µ = µrrer ⊗ er + µϕϕeϕ ⊗ eϕ + µzzez ⊗ ez + µrze
×
ϕ

α = αzzez ⊗ ez κ = κzzez ⊗ ez

P (0) = 0, Q(1) = 0, ξ = ξrrer ⊗ er + ξϕϕeϕ ⊗ eϕ + ξzzez ⊗ ez

the rest tensors are + ξϕreϕ ⊗ er + ξrϕer ⊗ eϕ

arbitrary

P (0) = 0, Q(1) = 0 (a) ξ = ξrrer ⊗ er + ξϕϕeϕ ⊗ eϕ + ξzzez ⊗ ez

P (1) = 1̂, Q(2) = −bν21̂ εϕϕµrr = εrrµϕϕ εrrαϕϕ = εϕϕκrr

Q(0) is arbitrary εrrκϕϕ = αrr εϕϕ b = µϕϕ

µrr
= εϕϕ

εrr

(b) ξ = ξzzez ⊗ ez + ξrr (1 − ez ⊗ ez) + iχξ e×
z

τ1, τ2 are the projection operators
(
τ1τ2 = τ2τ1 = 0, τ 2

1 = τ1, τ
2
2 = τ2, τ1 + τ2 = 1̂

)
. For

λ1 �= λ2 the projection operators are computed from the formulae

τ1 = Q(0) − λ21̂

λ1 − λ2
τ2 = −Q(0) − λ11̂

λ1 − λ2
. (52)

Then
√

Q(0) = √
λ1τ1 +

√
λ2τ2 and the Bessel function is equal to

J√
bν(

√
Q(0)r) = J√

bν(
√

λ1r)τ1 + J√
bν(

√
λ2r)τ2. (53)

If λ1 = λ2 then Q(0) = λ1(τ1 + τ2) = λ11̂ and J√
bν(

√
Q(0)r) = J√

bν(
√

λ1r)1̂.
In table 1, the correspondence between the tensors P (0), P (1),Q(0),Q(1),Q(2) and the

type of bianisotropic medium is given. We see, that condition P (0) = 0,Q(1) = 0 holds true
for a bianisotropic medium with different diagonal components of the tensors ξ ∈ {ε, µ, α, κ}
and arbitrary components ξrϕ, ξϕr . Such dielectric permittivity tensor, magnetic permeability
tensor and gyration pseudotensors have both symmetric and antisymmetric parts: ξ = ξs + ξa ,
where ξs = ξrrer ⊗ er + ξϕϕeϕ ⊗ eϕ + ξzzez ⊗ ez + 1

2 (ξrϕ + ξϕr)(eϕ ⊗ er + er ⊗ eϕ), ξa =
1
2 (ξrϕ − ξϕr)e

×
z . Tensor ξ is symmetric, when ξrϕ = ξϕr . In the general case bianisotropic

media under consideration are absorbing. For non-absorbing media

ε+ = ε, µ+ = µ, α+ = κ. (54)

P (0) = 0 holds true for other bianisotropic media, the example of which being the medium
(b) in table 1. Such a medium is non-absorbing, if εrz, µrz are imaginary, diagonal components
of tensors ε, µ are real and α∗

zz = κzz.
Condition P (0) = 0,Q(1) = 0, P (1) = 1̂,Q(2) = −bν21̂ is realized for two types of

bianisotropic media. In the first case the tensors ξ ∈ {ε, µ, α, κ} are diagonal. Diagonal
components satisfy the relationships given in table 1. The solutions of (28) are the Bessel
functions of the fractional order ±√

bν. The second class of media corresponds to media
isotropic in the fibre cross-section. This is the most important and practically applied case,
which includes isotropic, anisotropic, gyrotropic, biisotropic, bianisotropic media. At the
same time we can easily find solutions (39) (they are expressed by means of the Bessel
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functions), an evolution operator (43) of a circular layer, an impedance tensor (46), a fibre
dispersion equation (18).

Let us consider a number of examples with P (0) = 0, Q(1) = 0, P (1) = 1̂,Q(2) = −ν21̂.

5.1. Isotropic medium

The simplest case is the case of a homogeneous isotropic medium, which is characterized by
the scalar dielectric permittivity ε and magnetic permeability µ (α = 0, κ = 0). Then

Q(0) = (k2εµ − β2)1̂ T1 = T2 = F
(1)
ν± (u±r/a)1̂ T3 = T4 = F

(2)
ν± (u±r/a)1̂

where u2
± = ±k2a2(εµ − β2/k2), r = a is a point of a circular layer, F

(1)
ν+ = Jν(u+r/a) is the

Bessel function of the first kind, F
(2)
ν+ = Yν(u+r/a) is the Bessel function of the second kind,

F
(1)
ν− = Iν(u−r/a) and F

(2)
ν− = Kν(u−r/a) are the modified Bessel functions. F (1) and F (2)

are the linearly independent solutions of the Bessel equation (one can choose any couple of
them), the signs + and − correspond to the function arguments u+ and u−, respectively.

Tensors η1, η2, ζ1, ζ2 equal

ηm = F
(m)
ν±

(
ez ∓ βνa2

u2±r
eϕ

)
⊗ ez ± ikaε

u±
F

(m)′
ν± eϕ ⊗ eϕ

(55)

ζm = ∓ ikaµ

u±
F

(m)′
ν± eϕ ⊗ ez + F

(m)
ν±

(
ez ∓ βνa2

u2±r
eϕ

)
⊗ eϕ

where F
(m)′
ν± (x) = dF

(m)
ν± (x)/dx,m = 1, 2. The evolution operator and the impedance tensors

are computed from formulae (43) and (46). For a waveguide with the dielectric permittivity
and the magnetic permeability

ε =
{
εco for r < a

εcl for r � a
µ =

{
µco for r < a

µcl for r � a

one usually chooses solutions

Fν =
{

F
(1)
ν+ = Jν(u+r/a) for r < a

F
(2)
ν− = Kν(u−r/a) for r � a.

The choice of solutions is caused by the fact that only Bessel function Jν is finite at r = 0
and only Kν tends to zero at r = ∞. Then the surface impedance tensors at the interface
r = a are of the form

�co = − iu

kaεco

Jν(u)

J ′
ν(u)

(
ez − βνa

u2
eϕ

)
⊗

(
eϕ +

βνa

u2
ez

)
− ikaµco

u

J ′
ν(u)

Jν(u)
eϕ ⊗ ez

(56)

�cl = iw

kaεcl

Kν(w)

K ′
ν(w)

(
ez +

βνa

w2
eϕ

)
⊗

(
eϕ − βνa

w2
ez

)
+

ikaµcl

w

K ′
ν(w)

Kν(w)
eϕ ⊗ ez

where u2 = k2a2(εcoµco − β2/k2), w2 = k2a2(β2/k2 − εclµcl).
By substituting the surface impedance tensors into the dispersion equation (18) (n = 0),

we obtain the well-known dispersion relation which one can find, for instance, in [6–8]. In
the case of a multilayer isotropic fibre with n intermediate circular layers, the dispersion
equation (18) includes the evolution operators of these layers

�an

a0
= Sn(an)S

−
n (an−1)Sn−1(an−1)S

−
n−1(an−2) . . . S1(a1)S

−
1 (a0). (57)
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5.2. Bianisotropic medium

Let us consider a fibre with a bianisotropic core ε = ε1(1 − ez ⊗ ez) + ε2ez ⊗ ez, µ =
µ1(1 − ez ⊗ ez) + µ2ez ⊗ ez, α = κ = iχe×

z and an isotropic cladding εcl, µcl. In that case
T1, T2 in the core are equal to

T1 = T2 = Jν(
√

µ2/µ1ur/a)�e1 ⊗ �e1 + Jν(
√

ε2/ε1ur/a)�e2 ⊗ �e2

where u2 = k2a2(ε1µ1 − χ2 − β2/k2). Further, we find the surface impedance tensor of the
core at the fibre interface r = a

�co = − iu

ka
√

ε1ε2

Jν(
√

ε2/ε1u)

J ′
ν(

√
ε2/ε1u)

(
ez − (β + ikχ)νa

u2
eϕ

)
⊗

(
eϕ +

(β − ikχ)νa

u2
ez

)

− ika
√

µ1µ2

u

J ′
ν(

√
µ2/µ1u)

Jν(
√

µ2/µ1u)
eϕ ⊗ ez (58)

and the dispersion equation of the waveguide(
J ′

ν(
√

µ2/µ1u)

uJν(
√

µ2/µ1u)
+

µcl√
µ1µ2

K ′
ν(w)

wKν(w)

) (
J ′

ν(
√

ε2/ε1u)

uJν(
√

ε2/ε1u)
+

εcl√
ε1ε2

K ′
ν(w)

wKν(w)

)

= ν2

√
ε1ε2

√
µ1µ2

β2(u2 + w2)2 + k2w4χ2

k2u4w4
. (59)

Dispersion equations of two-layer fibres are determined by the impedance tensors of a
core and a cladding. The core impedance tensor is expressed in terms of the Bessel functions
Jν , the cladding impedance tensor in terms of the modified Bessel functions Kν . At r → ∞
the impedance tensors of a circular layer become the impedance tensors of a planar film.

6. Conclusion

Thus, the general matrix method for determining electromagnetic field in a circular
bianisotropic layer is developed. We use it to obtain the evolution operators and the impedance
tensors and to write the dispersion equations of multilayer fibres. As an example, we represent
the dispersion relations of the fibres with isotropic and bianisotropic cores. More complex
cases of multilayer fibres lead to cumbersome analytical results. That is why it is better to solve
the dispersion equation (18) of a multilayer fibre using a computer. The dispersion equation
can be easily programmed as an invariant of the multiplication of known block matrices. The
mode polarization and the energy flux are expressed by formulae (23) and (24).

Proposed method has some advantages in comparison with existing approaches for getting
dispersion relations. As one of the advantages, one can call on the generality of the technique
which allows us to obtain the guided modes for a wide set of bianisotropic fibres. Furthermore,
a dispersion equation is written in terms of the block matrices. The matrix computation
(addition and multiplication) can be easily done giving the analytical formulae and numerical
solutions of the problem. The simplicity of the proposed method in comparison with existing
techniques lies in the clear algorithm to obtain a dispersion equation for an arbitrary multilayer
fibre.

For a homogeneous circular bianisotropic layer, we reduce the 6 × 6 matrix equation (10)
to the differential equation of the second order (28) with 2 × 2 matrix coefficients for the
longitudinal field components. At some matrix coefficients, the solution of this equation is
expressed by means of the Bessel functions with matrix (tensor) argument (it is realized for
the media isotropic in the fibre cross-section).
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The matrix method can be applied for analysing the propagation of the Bessel beams
in complex media. Solutions obtained in the fibre core also describe the Bessel beams, the
longitudinal component of the beam energy flux being expressed by (24).
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